
LINKED LISTS

ANATOMY OF A LINKED LIST
 A linked list consists of:

 A sequence of nodes

a b c d

Each node contains a value

and a link (pointer or reference) to some other node

The last node contains a null link

The list may (or may not) have a header

myList

MORE TERMINOLOGY

 A node’s successor is the next node in the sequence

 The last node has no successor

 A node’s predecessor is the previous node in the

sequence

 The first node has no predecessor

 A list’s length is the number of elements in it

 A list may be empty (contain no elements)

POINTERS AND REFERENCES

 In C and C++ we have “pointers,” while in Java we

have “references”

 These are essentially the same thing

 The difference is that C and C++ allow you to modify pointers in

arbitrary ways, and to point to anything

 In Java, a reference is more of a “black box,” or ADT

 Available operations are:

 dereference (“follow”)

 copy

 compare for equality

 There are constraints on what kind of thing is referenced: for

example, a reference to an array of int can only refer to an

array of int

CREATING REFERENCES

 The keyword new creates a new object, but also

returns a reference to that object

 For example, Person p = new Person("John")

 new Person("John") creates the object and returns a

reference to it

 We can assign this reference to p, or use it in other

ways

CREATING LINKS IN JAVA

 class Node {
 int value;
 Node next;

 Node (int v, Node n) { // constructor

 value = v;
 next = n;
}

 }

 Node temp = new Node(17, null);

 temp = new Node(23, temp);

 temp = new Node(97, temp);

 Node myList = new Node(44, temp);

44 97 23 17

myList:

SINGLY-LINKED LISTS
 Here is a singly-linked list (SLL):

 Each node contains a value and a link to its successor (the

last node has no successor)

 The header points to the first node in the list (or contains the

null link if the list is empty)

a b c d

myList

CREATING A SIMPLE LIST

To create the list ("one", "two", "three"):
 Node numerals = new Node();

 numerals =
 new Node("one",
 new Node("two",
 new Node("three", null)));

three two one

numerals

TRAVERSING A SLL

The following method traverses a list (and

prints its elements):
 public void printFirstToLast(Node here) {

 while (here != null) {

 System.out.print(here.value + " ");
 here = here.next;

 }
}

You would write this as an instance

method of the Node class

TRAVERSING A SLL (ANIMATION)

three two one

numerals

here

INSERTING A NODE INTO A SLL

 There are many ways you might want to insert a

new node into a list:

 As the new first element

 As the new last element

 Before a given node (specified by a reference)

 After a given node

 Before a given value

 After a given value

 All are possible, but differ in difficulty

INSERTING AS A NEW FIRST ELEMENT

 This is probably the easiest method to implement

 In class Node:

 Node insertAtFront(Node oldFront, Object value) {
 Node newNode = new Node(value, oldFront);
 return newNode;
}

 Use this as: myList = insertAtFront(myList,
value);

 Why can’t we just make this an instance method of

Node?

USING A HEADER NODE

 A header node is just an initial node that exists at

the front of every list, even when the list is empty

 The purpose is to keep the list from being null,

and to point at the first element

two one head

numerals

 void insertAtFront(Object value) {
 Node front = new Node(value, this);
 this.next = front;
 }

INSERTING A NODE AFTER A GIVEN VALUE

void insertAfter(Object target, Object value) {

 for (Node here = this; here != null; here = here.next)
{

 if (here.value.equals(target)) {

 Node node = new Node(value, here.next);

 here.next = node;

 return;

 }
}

 // Couldn't insert--do something reasonable here!

}

INSERTING AFTER (ANIMATION)

three two one

numerals

2.5 node

Find the node you want to insert after

First, copy the link from the node that's already in the list

Then, change the link in the node that's already in the list

DELETING A NODE FROM A SLL

 In order to delete a node from a SLL, you have to

change the link in its predecessor

 This is slightly tricky, because you can’t follow a

pointer backwards

 Deleting the first node in a list is a special case,

because the node’s predecessor is the list header

DELETING AN ELEMENT FROM A SLL

three two one

numerals

three two one

numerals

• To delete the first element, change the link in the header

• To delete some other element, change the link in its predecessor

• Deleted nodes will eventually be garbage collected

(predecessor)

DOUBLY-LINKED LISTS

 Here is a doubly-linked list (DLL):

 Each node contains a value, a link to its successor (if

any), and a link to its predecessor (if any)

 The header points to the first node in the list and to

the last node in the list (or contains null links if the list

is empty)

myDLL

a b c

DLLS COMPARED TO SLLS
 Advantages:

 Can be traversed in either

direction (may be essential

for some programs)

 Some operations, such as

deletion and inserting before

a node, become easier

 Disadvantages:

 Requires more space

 List manipulations are

slower (because more links

must be changed)

 Greater chance of having

bugs (because more links

must be manipulated)

DELETING A NODE FROM A DLL
 Node deletion from a DLL involves changing two links

 In this example,we will delete node b

 We don’t have to do anything about the links in node b
 Garbage collection will take care of deleted nodes

 Deletion of the first node or the last node is a special case

myDLL

a b c

OTHER OPERATIONS ON LINKED LISTS

 Most “algorithms” on linked lists—such as insertion,

deletion, and searching—are pretty obvious; you

just need to be careful

 Sorting a linked list is just messy, since you can’t

directly access the nth element—you have to count

your way through a lot of other elements

